
1

Back to the Basics. In an Effort to Improve
Student Retention in Intro to Programming Classes

Ed Lindoo, Ph.D

Regis University

3333 Regis Blvd.

Denver, CO 80221-1099

303-964-6358

elindoo@regis.edu

ABSTRACT

High failure and drop-out rates in introductory programming courses are a big concern

for institutions, instructors and student’s. After reviewing the literature presented within

this paper, it became apparent that the problem is not merely a local challenge at our

institution (with a 50+ percent drop/fail rate), but rather a universal phenomenon. Student

performances in these intro courses show a large variation across the student population

for a variety of reasons such as teaching methods, teacher competence, the student’s self-

discipline but most importantly student motivation. In his study, Alturki [1] investigated

motivation using a two-factor theory, where factors causing satisfaction (motivators) and

dissatisfaction (hygiene factors) were applied to students in his courses. The results

showed that students with good intrinsic motivation had less difficulty completing the

course than other students whereas problems arose with students who had poor

motivation.

The Alturki [1] study concluded that low motivation is a major problem that affects pass

rate. Three steps were introduced to increase motivation. 1) reduce de-motivators, 2)

increase intrinsic motivators by making assignments and projects more appealing to

students (ie: visualization and real-world projects) and 3) introduce intrinsic motivators

by asking students to submit sections of assignments weekly rather than all at once. After

these improvements, the pass rate increased from 44% to 68%. A´lvarez (2016) also

determined that motivation is directly related to student satisfaction, and what could

satisfy students more than not only learning, but passing a course with a good, if not

exceptional grade. For these reasons, it is proposed to take a more simplistic, more

motivating approach in teaching intro to computers by teaching students a simple, basic

programming language called Xojo, while at the same time assigning real-world projects

and giving extra credit assignments to keep scores, and therefore motivation high.

INTRODUCTION

Students success or failure in the introductory programming course often determines their

majoring in computer science and related fields. If a student drops out, fails, or passes with

difficulty, Malik [8] found that it is unlikely that the student will enroll in a follow-on course.

Despite extensive research on factors that influence success of new students in introductory

programming, it is still not fully understood what makes an introductory programming course

positive and successful. However, Alturki [1] found that low success rates in introductory

programming were attributed to many factors, including student motivation, the intrinsic

difficulty of programming and the complexity of course structure. Suggestions to overcome these

problems and improve success rates include using less complex course structure, employing

more collaborative learning, redesigning course material, and improving teaching style. Alturki

mailto:elindoo@regis.edu

2

[1] also pointed out that researchers have found failure is not always associated with cognitive

ability, but often with motivation and teaching style.

Previous studies have found a strong connection between student performance and their

motivation. For example, Corney et al. [5] redesigned the CS1 introductory programming course

to be more engaging and collaborative to motivate students. In addition to using paired-

programming students during lab sessions, they redesigned the course to provide more

information and engaging content about various technologies like databases, the Web, and

networking. The goal was to make programming more interesting and more relevant to real-

world problems. The changes resulted in higher success rates, less dropouts and a course geared

to what industry requires from graduates (to be good communicators and team players who are

business-minded). According to Corney [5], the feedback on these changes from their students

showed the importance of making programming relevant to real problems. Therefore, the focus

of this paper is to find ways to motivate students in and introduction to programming course.

MOTIVATIONAL AND DEMOTIVATIONAL FACTORS

 The biggest challenge in learning programming is to acquire different sets of skills at the

same time [1]. Beginning students need to learn both syntax and semantics of a programming

language, while at the same time develop problem solving skills. To compound this challenge,

programming courses require students to study theoretical concepts and practice these concepts

while designing and developing programs. Therefore, novice programmers must learn multiple

concepts and apply these in a practical manner concurrently, often pushing students into overload

[8]. Interestingly, Pillay & Jugoo [10] found that students who had taken mathematics and

problem-solving prior to their CS1 course had a significant and positive improvement in CS1.

Pillay and Jugoo [10] also found course set-up and the choice of programming language an

important issue, one which plays a considerable role in the way programming concepts are

introduced to students.

Alturki [1] pointed out that there have been many debates about the most suitable

language to use for an introductory course. He found that most institutions are starting students

out in Java, C, C++, Python or Ruby. However, Barland [3] a professor at Radford argues that

C/C++ and Java are poor choices to learn as a first language. As Barland [3] points out,

“Programming is a difficult task, learned over months and years. Object-oriented programming

(the “++” part of “C++”) is a more advanced topic which is important for larger programs, but is

best taught after the fundamentals have been learned.” Barland [3] went on to say that “teachers

know it is only common sense not to distract from a topic by teaching advanced details to a

beginner, yet that is exactly what’s happening if we throw C++ or Java at them.” Malik [8] also

pointed out that 30 % of their programming course students dropped out because they found the

programming exercises too hard and difficult. Backing the comments of Barland [3], Malik [8]

went on to say that the usual approach in teaching programming is to start with the syntax of a

programming language (usually Java or a flavor of C) and move on to the associated semantics.

This has proven to not be the best approach as motivation can quickly drop.

During the early 1980’s, the bulk of schools teaching programming were doing so with

languages such as COBOL, Basic/Qbasic, Fortran, Pascal, RPG and assembler. Of these, Basic

was arguably the most disliked because it was very unstructured, not object oriented and the ease

of writing poor programs was exponential. Although the C language had been developed in the

70’s, it wasn’t until later in the 80’s when mini computers took off that C was introduced into the

3

college curriculums. When it was introduced, it took off, quickly jumping to the forefront of

teaching methods. However, as previously discussed, C is not a very intuitive language to learn

[3].

On the other hand, Pseudocode, an artificial and informal language is very easy to follow

and helps programmers develop algorithms. Pseudocode is “text-based” (algorithmic) and

written in English as a detailed yet readable description of what a computer program or

algorithm should do [9]. It is expressed in a formally-styled natural language rather than in a

programming language. For example, table 1 below presents Pseudocode on the left and Basic

programming code on the right.

Pseudocode Basic Code

Initialize total to zero

Initialize counter to zero

Entering 999 will end the program

Input the first grade

while the user has not entered 999

 if a valid grade is entered

 add this grade into the running total

 add one to the grade counter

 input the next grade (possibly 999 to end)

 if the counter is not equal to zero

 set the average to the total divided by

the counter

 print the average

else

print 'no grades were entered'

Dim total as integer = 0

Dim counter as integer = 0

Dim average as double

Input “Enter Grade zero to 100”, grade

While grade <> 999

 If grade => 0 and grade < 101 then

 total = total + grade

 counter = counter + 1

 Input “Enter Grade zero to 100”, grade

 If count > 0 then

 Average = total/counter

 print “Average = “; average

 end if

 else

 print “No grades were entered”

 end if

Wend ‘this is the end of the while loop
Table 1

Reading through the Pseudocode on the left is quite easy and intuitive, and with just a

little Basic programming training, it goes without saying that Pseudocode and Basic code are

very similar. As Mohd Rum [9] points out, Pseudocode makes creating programs easier,

allowing programmers to concentrate on the logic of the problem without having to know

programming language syntax. Pseudocode depicts the entire algorithm’s logic so that it requires

only rote implementation to translate it line by line into executable source code. Again, this

simplicity is demonstrated in table 1.

PROPOSAL

 Given the research presented, it is proposed to go back to the basics, Basic programming

that is. Not back to the days of Basic or Qbasic, but to the present day of an object-oriented

programming environment called Xojo, which uses Basic as the underlying code. As shown in

figure1, Xojo (pronounced Zo-Jo) is, on the surface a drag and drop programming environment.

With Xojo, many different types of apps can be built, including web-based apps, console (or

command line) apps and iOS apps. The view shown in figure1 is called the Layout view in which

the user visually designs the look and feel of the application. Behind the layout view is the code

view, where Xojo source code is entered to control the behavior and functionality of the

application.

4

As components are added to

projects, they will be displayed in

the Navigator, whether in Layout

View or Code View. Double

clicking on an item will open it for

editing. These can be arranged in

any order desired by a simple drag

and drop. The order in which these

items are arranged has no bearing

on the performance or functionality

of the application. It is up to the

designer to organize your project in

a way that makes sense. The

environment of XoJo is very much

like Microsoft Visual Studio,

however the full functionality suite (less the ability to create .exe files) is free from Xojo. And

just like Visual Studio, code view is simple basic coding like this:

Dim counter As Integer

For counter = 1 To 10

 MsgBox(Str(counter))

Next

One of the obvious benefits of Xojo is the motivational value it brings because of ease of use and

the ability to quickly and easily build a simple application. Gratification can be realized quickly

without a lot of frustration that typically goes with programming. But Xojo also has a lot of fun

things that can be built. For example, figure2 shows a program that not only stores information

about customers, but also shows on a map where they live. In figure3, Xojo simulates an Apple

iPhone giving the designer the ability to create applications for iPhone which when completed

can easily be published to the Apple store.

A free manual, written by Xojo staff, not only walks the user through building a number

of applications, but also covers many of the programming requirements of Basic. For example,

Chapter three covers, If... Then, Select Case, For... Next, Do... Loop, While... Wend, Exit and

Continue, and Hands On With Loops. Other chapters describe essentials such as Functions,

Figure 1

5

Scope, Lists & Array’s, Object Oriented Programming, working with Files, working with

Images, Printing, Networking, sending Emails, accessing Databases, Classes, as well as controls

such as Buttons, Pickers, and List Boxes. In addition, Xojo also has an extensive library of

hands-on videos (at: http://developer.xojo.com/videos) as well as example applications that come

free when Xojo is downloaded. One of the side benefits of Xojo which can be very beneficial for

business majors is that BASIC (VBA) is also used in the background programming of Excel and

MS-Access. It should be noted that Xojo runs on Windows, Mac and Linux platforms.

CONCLUSION

Simplifying the course structure and reducing its complexity have proven to have a

positive effect on student performance, motivation and retention [1]. By reducing complexity,

students focus more on the fundamental concepts in programming. By learning in the Xojo

environment, students don’t get bogged down in low-level programming languages that should

be introduced later in a CS curriculum. As Carvalho [4] pointed out, one of the most challenging

aspects of a computer science curriculum involves helping students learn the concepts of

programming. However, A´lvarez [2] believed that the biggest problem novice programmers run

into is their lack of program solving skills and because of this he points to high drop-out and

failure rates in programming courses. However, to overcome these problems, A´lvarez [2] found

that students need tools that help them to obtain these problem-solving skills. Practical learning

situations are the most useful for learning programming, believes A´lvarez [2], and it is for this

reason that he, and others advocate the use of visual programming environments which reduce

the cognitive requirement to start working on programming tasks. Although visual environments

do not solve the problems with the syntax, A´lvarez [2] believes that they could postpone the

problem as they allow the students to firstly focus on the task, not all the syntactic rules.

Another area to look at and one not previously discussed is that of project-based learning

(PBL). de-la-Fuente-Valentín, et al. [6] presented PBL techniques as an effective way to increase

student motivation and reduce dropout rates. While there is extensive research literature that

describes the use of PBL techniques within programming curriculums, it should be noted that it

is widely used in modern education across many disciplines. The Educators of America [7]

discuss the effective use of PBL as a “combination of collaboration, reflection, and individual

decision-making gives the students an applicable scenario to real-world situations that they will

face as they mature.” It is believed [7] that PBL allows students to collaborate in teams in ways

to address or solve the given problem. Solving real-world problems is key to student motivation

and de-la-Fuente-Valentín, et al. [6] back this in their discussion of understanding and solving

open-ended problems in a collaborative manner. Further evaluation and trials in the PBL are

recommended.

 Finally, starting the fall term 2018, we will introduce Xojo at our university in an attempt

to bring our 50+% drop/fail rate way down. It is anticipated that this rate will be cut in half (or

better), to under 25% by using the Xojo environment, reducing de-motivational factors,

increasing motivation, and using real-world projects.

References

[1] Alturki, R. Measuring and improving student performance in an introductory

programming course. Informatics in Education, Vilnius University Vol. 15, No. 2, 183–

204, 2016

http://developer.xojo.com/videos

6

[2] A´lvarez, A. and Larran˜aga. Experiences incorporating lego mindstorms robots in the basic

programming syllabus: Lessons learned. Springer Science+Business Media Dordrecht,

2016

[3] Barland, I. Why C and C++ are awful programming languages.

https://www.radford.edu/ibarland/Manifestoes/whyC++isBad.shtml, (2017)

[4] Carvalho. E. S. Analyzing the quality of student’s interaction in a distance learning

object-oriented programming discipline. Interdisciplinary Journal of e-Skills and Life

Long Learning, 11, 85-99. Retrieved from

http://www.ijello.org/Volume11/IJELLv11p085-099Carvalho0919.pdf, (2015)

[5] Corney, M., Teague, D., Thomas, R.N. Engaging students in programming. In: Twelfth

Australasian Conference on Computing Education – Volume 103. 63–72. (2010)

[6] de-la-Fuente-Valentín, L and Pardo, A. and Delgado-Kloos, C. Addressing drop-out and

sustained effort issues with large practical groups using an automated delivery and

assessment system. Department of Telematics Engineering, University Carlos III of

Madrid, Av. Universidad, 30, 28911 Leganés (Madrid), Spain (2012)

[7] Educators of America. What is project based learning? Buffalo, NY.

 https://www.educatorsusa.org/ (2018)

[8] Malik, S. and Coldwell-Neilson, J. A model for teaching an introductory programming

course using ADRI. Springer Science+Business Media New York, (2016)

[9] Mohd Rum, S. N., & Ismail, M. A. Metocognitive support accelerates computer assisted

learning for novice programmers. Educational Technology & Society, 20 (3), 170–181,

(2017)

[10] Pillay, N., Jugoo, V.R. An investigation into student characteristics affecting novice

programming performance. ACM SIGCSE Bulletin. DOI: 10.1145/1113847.1113888,

(2005)

https://www.radford.edu/ibarland/Manifestoes/whyC++isBad.shtml
http://www.ijello.org/Volume11/IJELLv11p085-099Carvalho0919.pdf
https://www.educatorsusa.org/

